Using permanent plots to monitor effects of soil subsidence Han van Dobben Pieter Slim

gas extraction at Ameland-East started in 1986
soil subsidence in ~circular area, radius ≈ 6 km
subsidence increased ~linearly over time
max. subsidence ~30 cm

Ecological effects

- soil subsidence may affect influence of salt water or fresh water on the vegetation
- main question: will this lead to a loss of biodiversity?
- vegetation changes anyhow...
- so the questions are if the observed changes can:
 - be explained from soil subsidence?
 - be interpreted as a loss of biodiversity?

Monitoring

- 65 permanent plots (2 X 2 m²) located in 5 transects
- monitoring at 3-year intervals (1986 2001)
- cover % vascular plants, mosses, lichens
- phreatic level (monthly)
- weather conditions (precipitation, evaporation, sea level) (continuously, from weather stations)
- soil chemical analysis (once)

Vegetation analysis

- 65 plots, 6 points in time, 276 species
- simple typology
 - sandy salt marsh; clayey salt marsh; pool shores; eutrophicated dune vegetation; dune heath; white dune
- ordination by DCA
- characterise vegetation by
 - scores on DCA axes (1 3)
 - biodiversity measures: 'CCV' and number of species
- ordination diagrams can be used to characterise the changes by tracking the 'path' of each type over time

_2

Interpretation of ordination diagram

- temporal changes often statistically significant, but small compared to spatial differences
- diagram can be used to infer environmental changes that caused the vegetation changes
- temporal changes mostly oscillatory, small linear component
- track down the cause of changes by using multiple regression to dissolve the spatial pattern and the temporal change into:
 - a constant component, due to topography
 - a linear component, due to soil subsidence
 - an oscillatory component, due to weather fluctuations

Cause - effect chain . . .

Dissolution of temporal signal

Caution!

- by using this model, any monotonous change may lead to a significant effect of soil subsidence
- other (maybe unknown) environmental variables may also monotonously change over time
- therefore, a check on the regression coefficient of soil subsidence has to be performed
- this is done by estimating the effect of elevation at the start of the monitoring, and comparing this effect to the effect of soil subsidence
- this can be formulated as a testable hypothesis

Back predict soil subsidence from vegetation

Outline of back prediction method

Result: back predicted compared to measured soil

Y variable	weather	back predicted / 'true' soil		
Subsidi	represented	subsidence		
	by:	(99% conf. interval)		
		lower limit	estimate	upper limit
phreatic level	precipitation	-1.78	-0.50	0.81
AX1	precipitation	-1.12	0.19	1.41
AX2	precipitation	-4.96	2.55	13.05
AX3	precipitation	-26.95	-7.63	-2.46
(-) rotatated AX1	precipitation	0.68	2.12	3.61
(+) rotatated AX1	precipitation	-4.66	1.64	7.87
conservancy value	precipitation	-27.30	-7.93	-2.72
Nspec	precipitation	-1.88	0.77	3.16
flooding	flooding at 2 m	1.28	1.56	1.85
AX1	flooding at 2 m	0.03	0.53	1.06
AX2	flooding at 2 m	*	*	*
AX3	flooding at 2 m	-0.56	1.62	5.57
(-) rotatated AX1	flooding at 2 m	0.32	0.93	1.59
(+) rotatated AX1	flooding at 2 m	0.50	1.50	2.75
conservancy value	flooding at 2 m	-0.98	2.66	277.12
Nspec	flooding at 2 m	-0.60	0.52	1.72

- if the range contains 0:
 - linear effect is n.s.
- if the range contains 1:
 - hypothesis that change in Y is due to soil subsidence cannot be falsified
- if the upper limit is <0:</p>
 - soil rise has to be assumed to explain the change in Y

Result: magnitude of the three components

variable COMDa	weather represented by:	percentage variance in the fitted values that can be explained by:		
		soil subs	weather	topography
phreatic level	precipitation	0.0%	5.8%	94.2%
AX1	precipitation	0.0%	0.1%	99.8%
AX2	precipitation	0.1%	0.0%	100.0%
(-) rotated AX1	precipitation	2.4%	0.0%	96.8%
(+) rotated AX2	precipitation	0.0%	0.0%	100.0%
Nspec	precipitation	0.0%	2.3%	94.5%
floooding	flooding at 2 m	7.3%	6.9%	88.8%
AX1	flooding at 2 m	1.3%	0.2%	98.8%
AX3	flooding at 2 m	2.7%	0.0%	98.3%
(-) rotated AX1	flooding at 2 m	3.4%	0.0%	96.6%
(+) rotated AX2	flooding at 2 m	3.4%	1.5%	96.3%
conservancy value	flooding at 2 m	2.3%	0.0%	98.0%
Nspec	flooding at 2 m	0.4%	0.0%	100.0%

only for those variables whose change may be due to soil subsidence irrespective of statistical significance

Conclusions

- temporal change very small compared to spatial differences
- soil subsidence and weather fluctuations have contributed about equally to the temporal changes
- the change in DCA-AX3 and in conservancy value can neither be explained from soil subsidence, nor from weather fluctuations

What caused the changes in AX3 and conservancy value?

- to explain these changes from a change in elevation, a rise in elevation has to be assumed
- both changes run markedly parallel over time, so they may have a common cause

Productive species seem to increase!

- has been noted by many other authors in the Dutch dunes
- generally considered as a loss of biodiversity
- cause unknown
 - 'autonomous' succession?
 - nitrogen deposition?
 - change in management?
 - collapse of rabbit population?

Afsluiting

© Wageningen UR

